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f ‘r. & = ;>>The optimization problem as tormulated in the METRIC model 433> takes

_} ; the form of minimizing the expected number of total system backorders

in any two-echelon inventory system subject to a budget constraint.

/

*
/\associated with the given budget constraint.

p To sglye this problem, one needs to find the optimal Lagrangian multi-
plieg
For any large scale inventory system, this task is computationally
not trivial. Fox and Landi proposed one method which was a significant
improvement over the original METRIC algorithm.f,ln this report we first
develop'? method for estimating the value of thé optimal Lagrangian
multiplier used in the Fox—Landl algorléhmjfg;;;;n;:alternatlve ways
for determining stock levels and eampa:eythese pruposed apprecaches with

e e A
the Fox~-Landi algorithqk dging two hypothetical inventory systems--one

involving 3 bases and /5 items; the cther has 5 bases and 125 items. The
comparison shows that the computational time can be reduced by nearly
50 percent. )

>Another factor that contributes to the higher requirement for com-
putational time in obtaining the solution to two-echelon inventory sys-
tems is that it has to optimally allocate stock to the depot as well as
to bases for a given total system stock level. This essentially requires
the evaluation of every possible combination 3Ff;;éot and base stock
levels--a time-consuming process for many practic inventory problems

with a sizable system stock level. This report also suggests a simple

approximation method for estimating the optimal depot stock level.
When this method was applied to the same two hypothetical inventory
systems indicated above, it was found that the estimate of optimal depot
stock is quite close to the optimal value in all cases. Furthermore, the
increase in expected system backorders using the estimated depot stock
levels rather than the optimal levels is generally small.

*The economic interpretation o; a Lagrangian multiplier is a reduc-

tion in backorder or shortage that can come about because of an increase !
in the investment in inventori)
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Further research will be required to estimate more precisely the
reduction in computational time if these approximation methods are
incorporated in the requirements computation system for recoverable
spares (D041) by the Air Force. For instance, we would have to apply
the proposed methods to stratified samples of recoverable items from
the D041 system and extrapolate the results on an Air Force-wide basis.
Nevertheless, even on qualitative grounds, the proposed methods are so

simple and reasonably accurate, our conclusion is that its implementa-

tion will be beneficial.
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I. TINTRODUCTION

Almost a decade ago Sherbrooke formulated the well~known METRIC
model for determining optimal stock levels for recoverable items--
items subject to repair when they fail--in a two-echelon setting [3].
Briefly, the two-echelon system he studied consists of several loca-
tions, called bases, at which primary demands occur; these bases are
in turn resupplied as necessary by a central repair and inventory
stocking point called a depot. When a failure occurs at a base, a
demand is placed on base supply for a corresponding replacement part.
The failed part is then either repaired at that base or is sent to the
depot for repair depending on the nature of the failure. Resupply of
base supply comes from the base maintenance organization if repair is
accomplished at the base; otherwise, resupply comes from the depot.

In either case, the organization resupplying the base supply activity
does so by exchanging a serviceable part for the failed part. Thus the
inventory policy for placing orders on the base's maintenance organiza-
tion or the depot is an (s - 1,s) policy.

Sherbrooke presented a model for determining both depot and base
stock levels for all items for this system. In particular, the problem
he formulated was to minimize the average total number of base back-
orders existing at an arbitrary point in time subject to a constraint

on system investment, that is,

m n
i jzl 121 XZS,_ s Sij)p(x“ijTij(sio))

1]
(P1)
m n
subject to 2 E €484 =Gy
j=0 i=1 J
where n = the number of items,

m = the number of bases,

= the stock level at base j for item i,

o




=

= the depot stock level for item i,

i0
Aij = the expected daily demand rate for item i at base j,
ci = the unit cost for item i,

C = -the budget constraint,
i ) = the average resupply time for base j for item i
given the depot stock level for item i is s,

i0
the probability that x units are in the resupply

, and

o
~
»
<
N
1]

system given that the expected number of units in

the resupply system is y.

Furthermore, Sherbrooke shows that Tij(sio) can be expressed as

Tij(SiO) = riinj + (1 - rij)(Bij + G(Sio) . Di) s
where Aij = the average base repair time for item i at base j,
rij = the proportion of demands requiring base repair
for item i at base j,
14 = the average order-and-ship time at base j for

item i,

Di = the average depot repair cycle time for item i,

G(Sio) . Di = (1/Ai) z (x - sio)p(x[liDi), the expected
X>s
i0
delay per depot demand for item i, and
m
Ny = z (1 -r,.)X,., the expected daily depot demand
5 =1 1" 1]

for item 1.

In the remainder of the report, i will refer to an item and j will
refer to a base (j = 0 represents the depot). Thus i and j will al-
ways be elements of the sets {1, ..., n} and {0, ..., m}, respectively.
Additionally, an integer k appearing in the text to the right of the
statement of a problem or equation will designate for future reference
that problem or equation. For complete description of problem back-

ground and formulation, see Ref. 3.




Subsequently Fox and Landi suggested a Lagrangian approach for
solving problem Pl [2]. One obstacle to the implementation of METRIC
using the Fox-Landi algorithm is the requirement of estimating an ap-
propriate value for the Lagrangian multiplier. Another important and
related problem is the lengthy computer run time required to obtain
an optimal solution to problem Pl when using their algorithm. A large
portion of this computational effort is related to searching for the
optimal depot stock level. This search is particularly time-consuming
for items having a high average number of units in the depot repair
cycle since the amount of computation required by their algorithm is
roughly proportional to the number of depot stock levels explicitly
examined.

In this report we first develop an approach for obtaining an esti-
mate of the optimal Lagrange multiplier value required in the Fox-Landi
algorithm, present two new methods for determining stock levels, and
compare these methods with the Fox-Landi method and other techniques.
The proposed approach eliminates the particularly time-consuming por-
tion of the Fox-Landi algorithm devoted to searching for the best
Lagrange multiplier value and signiticantly reduces computation time
for determining stock levels without degrading the quality of the
solution.

We then present a method for estimating the optimal depot stock
level. Limited computational experience indicates that this method is
easy to implement, provides a very good estimate of the optimal depot
stock level, and is particularly useful for items having a high average
number of units in the depot repair cycle. For these items it is pos-

sible to reduce computation time required by the Fox-Landi algorithm

by as much as 90 percent.
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II1. THE APPROXIMATION PROBLEM

In this section we first construct a problem that is a continuous
approximation to problem P1. We then state and prove two theorems that
are the basis for an algorithm that can be used to solve this approxi-
mating problem.

Recall that the total average base backorders existing at any

point in time for item i can be expressed as

m
(x -~ 8, )p (=X, T, .05,
jzl xzs ij P | 3 5 s L (s 10
ij

))

Two useful probability distributions for describing the demand process
are the Poisson and negative binomial distributions. As shown in

Ref. 1, this implies that if demand has a Poisson or negative binomial
distribution, then for a given value of xijTij(siO)’ p(xlkijTij(sio)),
the probability distribution representing the number of units in re-
supply of item i at base j at any point in time, is a Poisson or nega-
tive binomial distribution, respectively.

Experimental data gathered during the conduct of this study indi-
cate that when p(xlkijTij(sio)) is either a Poisson or negative binomial
distribution, the above total expected backorder expression can be
closely approximated by an exponential function. That an exponential
function accurately approximates this expression should not be entirely
unexpected. First, for budgets of practical interest, the item stock
levels, Sij’ are normally much larger than the average demand during
the resupply time. In fact, the probability of running out of stock
during the resupply time is often much less than .15 in real applica-
tions. Thus the only probabilities entering the backorder calculation
are the tail probabilities of the distribution. 1In the tails, both the
Poisson and negative binomial distributions behave almost like the

geometric distribution; that is, each succeeding probability is roughly

a constant proportion of its predecessor. Consequently, when s is

ij
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large relative to AijTiﬁ(SiO)’ the expected number of backorders
existing at any time atalocation j for item i is approximately a geo~
metric function of Sij' Therefore, an exponential function is a use-
ful continuous approximation to this relationship between expected
backorders at a location and the item's stock level at that location.
Furthermore, total expected base backorders exhibit this same
behavior. If demand has either a Poisson or negative binomial dis~-
tribution (or, for that matter, any compound Poisson distribution),
then the total number of units of an item in resupply across all bases
has a Poisson or negative binomial distribution, respectively, given
we assume independence of demand and common variance-to-mean ratio
among bases. Since in most practical situations total system stock
substantially exceeds the total expected number of units in resupply,

the tail of the distribution describing the total number of units in

resupply is the only portion of the distribution of importance. As an

approximation, this distribution can be used to determine the nature of

the relationship between total expected base backorders and total system
i stock. For the reasons discussed previously, an exponential function
should also adequately represent this relationship.

Thus we will approximate

m
Y 1 == 0exlr,, T (s,0))
: i Vi (e i)
j=1 x>s_, J J 1]
1]
with the exponential function
—biNl
B,(N,) = a_.e
: [ 1 i
In this approximation, Ni represents total system stock. In practice,
the parameters a; > 0 and hi > 0 are estimated using regression analy-
sis. The data used in the regression analysis are the backorder data

obtained from the solution to the problem

- - ,,

ot 2 el A o
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m
min ) ) (x ~ Sij)p(x'A Ti5(s40))

j=1 x>s i3 438
ij

subject to

Il o~—38
[
4
fov)
=]
o

for several appropriate values of Ni'

We now formulate a continuous approximation to problem Pl in
which the exponential representation of total system backorders for
an item is used. In this approximation problem, the decision vari-
ables are the total system stock, Ni’ rather than the stock levels
for each location, Sij' As we shall see, the main reason for studying
this approximation problem is that it is a vehicle for obtaining an
estimate of the optimal Lagrangian multiplier value used in the Fox-

Landi algorithm. The approximation problem is formulated as problem P2:

n
min ) B, (N,)
i=1

n
subject to z eN. S C , (p2)

Note that Ni is a continuous variable in this approximation. The
optimality conditions (Kuhn~Tucker conditions) for this problem are
as follows:

Find 61 > 0 such that




(d) N,|=—=—+ 6.c =0 .

A relaxed version of problem P2 in which the non-negativity con-

straint on the item stock level is removed is problem P3:

n
min izl Bi(Ni)
(P3)
n
subject to izl ciNi <cC

The optimality conditions for this problem are:

Find 62 > 0 such that

(a) — +06,c, =0,
n
() ) eN, <cC,

n
(c) 6 ) R ~Cl=0,

z is1 ii
dBi
(d) Ni EN—'+92C1 = 0 ,




We now explore the relationship between problems P2 and P3 in
detail.

Suppose we obtained a solution to problem P3.* Let Ni represent
the optimal solution to problem P2, and Ni represent the optimal solu-
tion to problem P3. 1If Ni > 0 for all i, then N; = Ni and the objec-
tive function values are equal.

Suppose, however, that Ni < 0 for at least one value of i. Let

N,
i

2
max (0, Ni)

and

ol
1

Il o~
0
|

i=1
< = 2 ) = 2 =
Since Ni 2 Ni for all i and Ni > Ni for at least one i, C > C.
Suppose problem P2 is modified slightly so that the right-hand
side value C is replaced by C. This modified problem is problem P4:

n
min ) B, (N,)
i=1 1

subject to (P4)

o~
(¢]
(=%
=z
[fA
o]

where N

v
(=

The optimality conditions for this problem are the same as those given
for problem P2 after substituting C for C. Also, let O represent the
optimal value of the Lagrangian multiplier for problem P4.

In solving problem P3, we will obtain a value for 62. We now

show that 6 = 62, and that N, = max(0, Ni) is an optimal solution to

i

*
Section III develops the method for determining the solution to
problem P3.
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problem P4 by demonstrating that these values satisfy the Kuhn-Tucker

conditions corresponding to problem P4.

By construction,

[t
0
Z|

[}
ol
Z|

v

(@]

, and )

I o~>8
n
2|
)
el
n
]

If 6 = 62, 8 > 0 since 62 > 0. Suppose ﬁi = Ni, that is, N?

= > 0
Then

dB, dB,

1 OENL

dN i le 2

N.=N, N.=N
i i i
and
dB, dB =
0=dNi 2+62C1=dN FRey
N.=N| N=N
i i

By assumption there exists at least one value of i for which
N, > N?; that is, N. = 0 while N° < 0, Since
1 a il 1 h

dB, dB
o 1 1

—_— i

dN, dN, :
1 E

we know that




Consequently, the optimal solution to problem P4 is Ni = ﬁi =
max{0, Ni}. Furthermore, the optimality conditions are satisfied

when 6 is equal to 92.

Theorem 1. 6, > 6,.

Proof: The optimal objective function value for problem P2 is a
convex, differentiable, strictly decreasing function of the available
budget, C. Since the slope of this function is equal to the negative
of the Lagrangian multiplier value, 81 ;'5 since C ;.E. But 62 =0,
so 61 2 9,.

Corollary. 6, > 6, when C > C.

Next we compare Nl with N,. If C = C, then Ni = N, for all i.

i i i
Now let us suppose C > C so that 91 > 62 = 6. Let us examine the two
cases ﬁi > 0 and Ei = 0 separately.
First, assume ﬁi > 0. Then
dB
i B
N + eci =0
i N =N
1 |
Furthermore, if Ni > 0, then
dBi
aN i
i N =N1
o i £
Since
- dB
s S el a0
N,=N
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dBi dBi
dN dN 2
il = - | S -
Ni N Ni N1
= ) S = 1
and Ni < Ni' If Ei = 0, then Ni > Ni'
Next assume Ni = 0. Since
dB dB
i 1 =
an * G50y dN R 20,
N.=0 N.=0
1

it follows that N

proven the following theorem.

Theorem 2. ﬁi
In this section we established several
II1
rithm for solving problem P2 based on these
As

among problems P2, P3, and P4. In Sec.
how to find the solution to problem P3.
once we have the solution to problem P3, we
problem P4.

In particular, if N, = 0,

= 0 by complementary slackness.

of the N%.
i

i Combining this

Thus we have

> Ni; additionaily, Ei > Ni whenever ﬁi > 0.

important relationships
we develop a simple algo-
relationships and show
we have just demonstrated,

also have the solution to

From Theorem 2, we then have an upper bound on the values

then 1= = 0.

i

observation with the implications of Theorem 1 and its corollary pro-

vides the basis for the proposed algorithm for solving problem P2.




=12

E III. COMPUTING OPTIMAL SOLUTIONS FOR PROBLEMS P2 AND P3

We begin this section by developing a method for determining the
optimal solution to problem P3. Observe that the optimal solution

must satisfy the following two conditions:

dBi
EﬁT + Gzci =0
| i
\ and
)
¢, N, =¢C
i=1 ii

The second condition must hold since each Bi(Ni) is a strictly de-

creasing function of Nj.

Since

-b.N
ii
Bi(Ni) = ae v

where a bi > 0, the first condition states that

i,

-b,N
aibie 14
92 A e e 100E
“i
or
Y a.b,
6820, «taf2L]-bn
2 [~ ii
i
Letting
a,b
d, = &n £ .
i c




et

we see that

From the second condition we know that

n di - 6
R R =C .
i=1 i
Thus
n
. 121 (e d,ib,) - €
0 =
IZI /b.)
(c./b
fug.
Letting
n c,d n ¢
a= 3 i I and B-= ) Ei s
i=1 i i=1 i
we can express 5 as
A\ a=~-C
B
Thus
and
d, - - g, ¥ C
R 1 2
Ni = b s f 'Y (E )
x i




14~

where g, = Bdi - o and fi = Bbi' Consequently, N. is a linear function

i

of C. If the budget is incremented by an amount AC, then Ni, the new

value of the stock level for item i, satisfies

The optimal solution to problem P2 has been found if each of the
Ni found using Eq. (E2) is non-negative. If there exists an i for
which N, < 0, then we may employ the following algorithm to find the

optimalisolution to problem P2. Let I = {1, ..., n} and Ni represent
the optimal solution to problem PZ.

Step 0. Solve Problem P3 as described above, thereby obtaining
an initial value for Ni’ 1 € L.

Step 1. Set Ni = 0 for all Ni < 0 during the last iteration and

delete the corresponding i from I. Recompute o and B, where

i ow oy
o
g
izl{bi}.

Step 2. Using Eq. (E2), obtain new estimates of Ni for each

and

oW
]

i eI. If Nj >0 for all i € I, then the optimal solution has been

lag forallicIandN =Oforalli=1, ..., n for
i i i

which i ¢ I. 1If there exists some i for which Ni < 0, return to

found, and N

step 1.
It is clear that our solution satisfies all the optimality condi-
tions for problem P2 except possibly condition (a) for i ¢ I. However,

at an earlier iteration (when i was deleted from I) we had

A 4 — -
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B8,

where 3& and ﬁ;(<0) are the earlier values of 62 and ﬁ;, respectively.

Since dBi/dN1 is clearly increasing in Ni’ and 62 increases at each

iteration (Theorem 1 and its corollary), condition (a) must hold.

vergence is guaranteed since n is finite.

Con-
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IV. A COMPARISON OF ALTERNATIVE SOLUTION PROCEDURES
FOR SOLVING PROBLEM P1

In this section we review three algorithms for solving problem Pl
and compare them to two algorithms designed to obtain a solution for
problem Pl based on the solution to the approximating problem, problem

P2.

THE SHERBROOKE PROCEDURE

The first algorithm, a procedure originally proposed by Sherbrooke

[3], is a marginal analysis algorithm consisting of two phases. In the
first phase, each item is examined independently. The optimization

problem solved for item i in the first phase has the form:

m
min ) ) (x - s, )p&x|\,.T,.(s..))
j=1 x>s,, 1] 2y O R €0,
1]
m
subject to .z Sij = N (P5)
j=0
where S,u = Oy Xy wews

and Ni is the total system stock available for distribution among the
depot and bases. Let Zi(Ni) represent the optimal objective function
value for problem P5 given Ni units are available for distribution.

Problem P5 is solved by obtaining the solution to the Ni + 1 problems

m
Z, (N, 8;0) = min | Y, A sij)p(xl)\ijTij(siO))
j=1 x>s_ .
1]
m
subject to jzl 5y4 N, - sy (P6)

where s w0, Iy vouy

P




] P

and SiO is fixed for siO

via marginal analysis. Then

= 0. b, cens Ni' Problem P6 can be solved L

Zi(Ni) = min Zi(Ni’ S..) &

i0
%10

where SiO = 0, s Ni a

The second-phase problem is

n
min .Z z, ()
i=1

subject to E CiNi < C ,

where Ni 500 S (RO

Sherbrooke [3] suggests that a marginal analysis algorithm be used to
find a solution to this knapsack problem. Clearly other procedures
could be employed to obtain an optimal solution. In any case, this
approach requires a substantial amount of storage to save all the
Zi(Ni) values. For moderatzly sized problems--several thousand items--
a storage requirement of 10 or more words may be needed to save these
values. Furthermore, the computation time required to obtain these

Zi(Ni) values for such problems is very large.

THE FOX AND LANDI PROCEDURE
Subsequently Fox and Landi [2] proposed a Lagrangian algorithm

for solving problem Pl. In particular, they formulated the relaxed

version of problem Pl as problem P7: :

——————al




=} 8=

m n m n
win § } J (x~ sij)p(xlk..Tij(siO)) +6 ) V e,

§=1 151 s = j=0 =1 * 13

(P7)

where Sij =05 B

and 0 is the Lagrangian multiplier. Since problem P7 is separable by
item, its optimal solution can be found by solving the n individual

item problems

m m
min ) ) (x - s )p(x|A, T, (s,))) +6 ) c.s,,
j=1 x>sij ij ij ij io0 j=0 n i £

subject to sij =0k, 1y

This problem, like problem P6 in Sherbrooke's two-phase method, is

solved using a partitioning procedure, that is, it is reformulated as

m
min B¢ 550 + Z min
Si0=0’1’ J=l Sij—o,l’
(P8)
{ Y (x - sij)p(xilijTij(siO)) + Gcisij: Si0 f1xed} 5
X>s, .,
1]
or equivalently as
min Z(sio; 0)
(P9)
where $i0 = Oy Yoo

and

S —




-19-

m
Z(Sio; 6) = ecisiO + 'Z min { 2 (x - sij)p(xlkijTij(siO))
j=1 sij x>sij

+ Ocisij: Sij =0 e siO f1xed} .

To determine Z(SiO; 0), solve the m base problems

min Z (x - s.,)p(x|A,.T,.(s,.)) + O¢c.s,,
4. 395, ij ij ij 10 i1ij
1] 1]

The optimal sij is the smallest non-negative integer for which

b

1]

(8;07) < Oc, -

Problem P8 is solved for each item for a given value of 6. This
yields a total investment cost corresponding to 6. In the Fox-Landi
approach, the "optimal" value of 6 is selected from a grid of M equally

spaced values,

The optimal value of 6 is the GK, K e {0, ..., M}, whose corresponding
total investment cost is closest to C.

Fox and Landi suggest that their method is a single-pass method;
that is, only one pass through the item data base is necessary to ob-
tain the optimal solution. The storage requirement to effect this
one-pass approach is potentially enormous. For a moderately sized
problem having 3000 items, 20 bases, and M = 63, almost 4 million item

stock levels must be saved, plus possibly millions of additional item

data elements reflecting fill rates, probability of no stockout at an
arbitrary point in time, expected base backorders, etc. Furthermore,

because there may be no simple method for estimating suitable bounds
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on the values of the multipliers, much larger values of M may be re-

quired to ensure adequate approximation of the budget.

It has been the author's experience that Air Force personnel have
difficulty estimating a reasonable range for 6 for large problems.

This is not surprising because the data used in the model frequently
change in real situations, thereby causing the optimal value of the
multiplier to change. Furthermore, changing the multiplier's magnitude
by 10_6 or less often causes the corresponding total cost to change by
many millions of dollars. Consequently, 210 values of 6 have been used
in some Air Force applications to make the system "foolproof." In these
cases 60 million or more item stock levels would be needed to be ex-
plicitly stored--plus a considerable amount of other item and base
data--to make the Fox-Landi algorithm truly a one-pass method.

On the other hand, if their method is altered so that the item
data are passed through a second time, it is possible to eliminate
virtually all the requirement for secondary storage. In the first
pass, only the running total cost corresponding to each GK,

Ke {0, ..., M}, is saved. At the end of this phase the '"optimal"
multiplier value, 6%, is established. The second phase of the algo-
rithm requires a second pass through the data base. In the second
pass, the optimal stock levels for each location are found for all
items by resolving problem P8 with 6 = 0%*.

In some applications the Fox-Landi one-pass method is clearly
infeasible; that is, there may not be enough peripheral storage ca-
pacity to save all the data. If storage capacity is available, there
is a tradeoff between the time and cost required to store and access
the data in the secondary memory using the one-pass method, and the
time and cost to recompute the stock levels using the second method.
For realistic Air Force problems, the two-pass method appears to be
the only feasible approach given current hardware constraints if M is
large enough to guarantee that a solution can be found that closely

approximates the target budget.
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THE -BISECTION METHOD

A third way to solve problem Pl is a slight modification for the
Fox~Landi algorithm called the bisection method, which employs a bi-
section search to find the optimal value for 6. This procedure requires
initial upper and lower bounds on the optimal value of 6. Call these
GU and GL, respectively. The bisection method is as follows:

1. 8t §= (6. +6 1/2.

2. Solve problem P8 with 6 = 6§ for each item.

3. 1If the total cost of the solution obtained in step 2 exceeds

Z, then replace GL with 8; otherwise, replace GU with 6°

4. TIf a stopping criterion has not been met (such as a fixed

number of iterations or an error tolerance), return to step

1; otherwise, stop.

The major drawback to the bisection approach is that a separate
pass through the item data base is required at each iteration of the
algorithm. This algorithm performs very well in terms of convergence,
and we have found that it almost always produces solutions that are

within 1/2 percent of the target budget using 10 bisections.

COMPARISON OF METHODS

The closeness of the solutions to the target budget generated by
either the Fox-Landi method or the bisection algorithm depends on how
broad a range of multiplier values must be searched for a fixed value
of M or a fixed number of bisections. It should be pointed out that
both of these methods only yield an approximation to the optimal multi-
plier value (assuming one exists).

Of the methods discussed thus far, it has been the experience of
the author, as well as of Fox and Landi (2], that the latter two algo-
rithms dominate Sherbrooke's algorithm in run times by an order of mag-
nitude or more on real problems given reasonable estimates of upper and

lower bounds for the Lagrangian multiplier. Thus in the comparisons

we will report, only these two Lagrangian methods will be discussed.
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APPROXIMATION METHODS

&

%ﬁ Earlier we described an approximation method for estimating the
%; optimal values of 6 and each Ni' Several options are open for imple-
% menting this approximation method. One way to implement it is to use
%i a two-phase approach. Call this approach the First Approximation

éi Method. The values of a; and bi are computed in the first phase of

By

this method and the optimal value of 6 is estimated using Eq. (El).
In the second phase, we solve problem P8 for each item, using the esti-
mate of the optimal 6. This approach has two major advantages over the

Fox-Landi method:

1. The estimate of the optimal multiplier can be obtained without
prespecifying a range of values, and computation time to ob-
tain the estimate does not depend on the uncertainty of the
multiplier value.

2. The computation time to find an estimate of the optimal multi-

plier is much smaller.

If the two-pass version of the Fox~Landi algorithm is used, the second
phase of that method and the approximation method are the same. The
one-pass version of the Fox-Landi algorithm requires considerably more
storage, and also requires more computer time to determine the optimal
stock levels than this approximation method requires.

This approximation approach also has advantages over the bisection

method:

1. Only two passes through the data base are required as opposed

to seven or more required for the bisection method in practice.
2. No stock levels need to be saved; in the bisection method it
is necessary to save all stock levels and other data for three

multiplier values.

Another algorithm can be employed that directly uses the results
of the approximation problem, that is, problem P2. Call this approach

the Second Approximation Method. This algorithm is of interest in
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situations in which we only want to compute total system stock for
each item and are not particularly interested in computing the optimal
distribution of the assets. Determining the optimal allocation of a
budget among items is of primary importance when purchasing inventory
or making budgetary projections for spares for different systems. In
these cases, distribution decisions are usually not that critical.
This Second Approximation algorithm also consists of two phases.
In the first phase we estimate the values of the ai and bi parameters,
and in the second phase we determine total system stock for each item
using the algorithm described in Sec. II1 and rounding Ni to the
nearest integer. The algorithm requires one pass through the item
data base and one pass through an item file consisting of ajs hj, and
c;- The major advantage of this approach is that it eliminates the
stock allocation phase of both the Fox-Landi method and the First

Approximation algorithm.
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V. A COMPUTATIONAL COMPARISON OF VARIOUS ALGORITHMS

The Fox-Landi algorithm, bisection algorithm, and the two approxi-
mation methods have been coded and tested on several sample sets of
data for the Air Force's new F-15 fighter, Since all of the tests
yielded the same general results, we will discuss only two of them
in detail. The first test consisted of a 75-item sample and had 3
operating bases. The flying programs were very different at each base.
In the second test, 125 items were included in the sample with demands
occurring at 5 bases. In the second test, only the Fox~Landi and the
two approximation methods were compared. The run times stated for both
approximation algorithms include the time required to estimate the
values of a; and bi. In all Fox-Landi calculations, a maximum of 128
multiplier values were examined; ten bisections were used in all appli-
cations of the bisection method. Furthermore, in both test cases all
stock levels for all relevant multiplier values were stored in main
memory. Thus, although the reported computation times, which include
compile times, are roughly equal for all the algorithms, they are
biased in favor of the Fox-Landi method because this type of storage
would be impossible for larger problems. In addition, the range of
multiplier values considered in the test of the Fox-Landi and bisection
methods was selected after estimating the optimal multiplier value
using the First Approximation Method. Thus the test results are biased
in favor of them, since the range of multiplier values was much smaller
than would normally be the case.

The data displayed in Tables 1 and 2 indicate how well each approach
approximates a given target budget for the two test data sets. Without
a doubt the bisection method produced solutions that best matched the
target budgets, followed in order by the Second Approximation Method,
the Fox-Landi method, and the First Approximation Method. As mentioned
before, the results are biased in favor of both the Fox-Landi and bi-
section methods due to the initialization of the range of multiplier

values. From a practical viewpoint, all approaches worked acceptably

well in meeting the target budgets. Furthermore, the stock levels




Table 1

75-1ITEM, 3~BASE TEST CASE

Total Cost ($ millions)

Target First Second
Budget Bisection | Fox-Landi | Approximation | Approximation
3.68 3.67 3.68 3.63 3.63
3.97 3.99 392 3.82 4.03
4,27 4.27 4.27 4.30 4.18
4.57 4.57 4.57 4.62 4.61
4.87 4.87 4.85 4.87 4.78
5.16 5.16 5«18 5.09 5. 17
5.46 5.46 5.42 5.38 5.49
5.16 5.76 5.76 > 85 D] Y
6.05 6.06 6.05 6.06 6.08
6.35 6.34 6.38 6.28 6.33
6.65 6.65 6.63 6.63 6.73
6.94 6.89 6.80 6.87 6.92
7.24 7.24 7+ 19 127 7.24
7.54 7.54 737 7.68 .51
7.83 7.84 717 7.80 7+83
8.13 8.14 8.24 8.20 8.05
8.43 8.42 8.50 8.42 8.42
8.73 8.73 8.50 8.74 8.77
9.02 9.02 9.04 g1k 9.00
Execution
time
(sec) « DI 19.51 29 4.57

O g——

budgets.

The area in which the methods clearly differ is in computation

The approximation methods require substantially less time than

mates the Lagrangian multiplier.

generated by the various approaches were virtually the same for similar
Consequently, total system expected backorders, for all prac-
tical purposes, are indistinguishable; that is, the backorder versus
investment curves virtually coincide among these various approaches.
Exact comparison of computed stock levels and expected backorders can-
not be made among the competing methods since the allocation of the

available budget in each case depends on the way each algorithm esti-

either the Fox-Landi method or the more time-consuming bisection method.
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Table 2

125-ITEM, 5-BASE TEST CASE

Total Cost ($ millions)
Target First Second
Budget Fox-Landi | Approximation | Approximation
26.4 26.7 24.8 26.6
27.6 27.6 26.2 27..9
28.7 287 27.6 28.9
29.8 30.0 29.5 29.8
31.0 31.2 30.7 30.8
32.1 32.1 32.0 32,2
33.2 33.3 33.1 33.1
34.4 34.4 34.3 34.2
35.4 35.5 35.9 357
36.6 36.8 37.0 36.7
37.8 38.0 38.1 37.7
38.9 38.6 39.3 39,2
40.0 39.9 40.6 40.0
41.2 41.1 42,1 41.3
42.3 42.5 43.9 42.4
43.4 43.3 44,7 43.7
44,6 44.5 45,6 44.2
45.7 46.3 46.1 45.9
46.8 47.2 47.3 46.7
Execution
time
(sec) 36.98 16.28 4.74
NOTE: All programs are run on an IBM 370/168.

Other experimentation has shown that the percentage difference in com-

putation times tends to be even more substantial as the number of items

considered increases.

Thus the approximation methods produce answers that are as good as

those produced by the Fox-Landi method and the bisection method, only

much more quickly than those methods. The b

isection method does, how=-

ever, match target budgets slightly better than the approximation

methods.

However, the approximation algorithms are virtually foolproof,

which is perhaps their greatest advantage.

The user does not have to

specify the range of multiplier values or the number of bisections in

advance.

This eliminates one problem associated with implementing




=

either the Fox-Landi or bisection algorithms. In view of these ob-

servations, the approximation procedures developed here appear to be

superior for use on real problems.
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VI. ESTIMATION OF THE OPTIMAL DEPOT STOCK LEVEL

We have described Sherbrooke's algorithm and several Lagrangian
type methods for solving problem P1l, and have demonstrated that it is
possible to significantly reduce the computational requirement of the
Fox-Landi method by solving an approximation problem to obtain a good
estimate of an appropriate value for the Lagrangian multiplier. 1In
this section we describe a different way to reduce the computational
requirements of all the algorithms that have been discussed. As can
be seen by reexamining Sherbrooke's approach (see problem P6) and the
Fox-Landi algorithm (see problems P8 and P9), the amount of computation
required to solve problem Pl using these methods is directly proportional
to the number of depot stock levels explicitly examined. Consequently,
if this number can be reduced, then the total time required to compute
an optimal solution can also be reduced.

The method that we describe in this section to estimate the optimal
depot stock level will be of particular value when the expected number
of units in the depot resupply system for 2n item is 20 or more. The
approximation algorithm can reduce computation time for the algorithms
described in Sec. IV by as much as 90 percent for these high demand
items.

We have indicated how the optimal base stock level, call it S;j’
can be calculated given the depot stock level 5.0 and the value of 6.
In particular, we have shown that Sij is optimal if it is the smallest

non-negative integer for which

ok
xgs p(X(AiJ -
ij

j(sio)) < Ocy .

We now develop a different but equivalent way of characterizing s;j'
To simplify notation, let us suppress the item index i. We will also
assume that p(x[AjTj(so)) has a Poisson distribution.

Define the convex backorder function for base j as




E A ad
Bj(sj, ) XZS (x sj)p(xlxjrj<so)) :

for s, > 0 and integer, and the piecewise linear completion of Bj’

call it ﬁj, as follows:

(Bj(t; SO) if t is a non-negative integer.

[B.(s .3 8 ) — B. (s, —'1; s t - (s, - 1))
16553 859) = By(sy - 13 sp)1(e - (s, - 1)

ﬁ (t; s,) 8 < + B(s, = L; s.), 5, - 1L <t <8, 3

: Bt 3 oree sy 5o £

where sj is a non-negative integer,

and B(-1; sO) é o,

Let

A A/\
AB.(s,s 8.} = B.(s.; s) - B (s, - 1; s
13" ¢ J(J 0’ (J
when sj is a non-negative integer, and

D(sj; sg) 2 fu: ABj(sj; 850 ¥ & ABj(sj +1; sg)} .

Observe that Dj(sj; so) U {ABj(sj; so)} is the set of subgradients of
ﬁ, at Sj' Then an alternative way of verifying that s? is an optimal
base stock level is to show that - 6c € D(Sﬁ; sO).

Next let

A @
F(sl, Sps +evs S5 SO) = jzl (Bj(sj’ so) + e(sj)

By dropping both the integrality and non-negativity restrictions on

84 we obtain the following relaxation of problem P8:

{F(sl, cees 83 so): s fixed}} . (P10)

. 0

min {Bcs + min
S s.=0,l,...

0

S0 j
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If SO is the optimal solution to problem P10, then

%E; +0c=0.
)

But

9B, 9T,
kiie ol W9y
1 3Tj Bso

Furthermore, by writing Bj(sj; SO) as

Kp(K + s, |AT, s
Kzl & SJl J(SO))

we see that

K+sj—l
0B, © -A.T, AT
T s L
3 s 1
BTj k=1 3 (K + sj 1)!
K+sj
-A.T, i
o ey Ry R
K=1 j (K + sj)!
= -XjAB(sj; sO)

As we discussed in Sec. 11, the function

By(sy) 2y - s4)P (x| AD)

X>s
0

can be closely approximated by an exponential function of the form

-b,s
0 . 0, where a, and b, are positive real numbers. Then

o 0 0

e —————cdll]

(E3)

|
|
|
|
|
|
l




-b,.s

- e 1 00
Tj(SO) = rjAj + (1 rj)Bj + X 208
and
oT. Iy (1-r.) o e-bosO
ds A 070 2
0
Upon combining these observations we see that
l1-r,) -b.s
F _ ¢ Lo ( i 0°0
350 _.jzl AjAB(sj, so) 5y aoboe .

Recall that -6c¢c € D(sg; so). Consequently -Oc approximates the
marginal reduction in backorders at base j when the stock level at that
base is s?. After making this substitution and representing this fur-

~
ther approximation of 8F/8s0 by 8F/3$0, we see that

P _bs
oF v I 0°0
BSO = - jzl a - rj)kj 5 ecaoboe
~b,s
070
= ~eca0b0e v

Substituting this approximation into Eq. (E3) we obtain the follow-
ing estimate of the optimal depot stock level:

8, = - — fn . (E4)
0 b {aob0 }

Recall the value of §0 is derived based on an exponential approxi-
mation of Bo(so). As the average number of units in the depot repair
cycle increases, that is, as AD increases, the quality of this expo-
nential approximation improves in the region in which the optimal depot

stock level should be located. Consequently, the approximation should
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be most accurate in these cases. But, the problems for which the
search for the optimal depot stock level is most time-consuming for
the algorithms described in Sec. IV correspond to the items having a
large number of units in depot repair. Therefore, the proposed ap-
proximation method will be most appropriate for the items requiring
the greatest amount of computational effort.

The approach we have described for estimating the optimal depot
stock level has been c¢oded and tested using a sample of 40 F-15 air-
craft items. The test consisted of two sets of runs. 1In the first set,
monthly flyving was divided among 3 bases; in the second set the same
monthly flying program was divided among 5 bases. The total budget
distributed among the 40 items ranged from $34 million to $65 million
in the first set of runs, and from $34 million to $88 million in the
second set. Table 3 contains the data indicating both the optimal and
estimated depot stock level for each item in both runs.

As shown in the table, there is usually no single optimal depot
stock level for an item. Rather the optimal value depends on the
amount of total item system stock available for distribution among
the depot and bases. The estimate of optimal depot stock is quite
close to the optimal value in all cases. Furthermore, the increase
in expected system backorders using the estimated depot stock levels
rather than the optimal levels is generally small. For most items
the increase is substantially less than .1 backorders.

The results of the tests indicate that it is possible to estimate
closely the optimal depot stock level using Eq. (E4). Additionally,
incorporating this method for estimating the optimal depot stock into
the algorithms described in Sec. IV will considerably reduce the search
required to find the optimal depot stock level and will therefore

markedly reduce the computational time needed to solve problem Pl

using these algorithms.
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Table 3

COMPARISON OF OPTIMAL AND ESTIMATED DEPOT STOCK LEVELS
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